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Figure 1: Virtual-physical decoupling illusions create two levels of reality when manipulating the world. On the experiential
level perceived by the user, objects can be manipulated in ways only virtuality affords. On the physical level, a robot replicates

virtual manipulations without exposing itself to the user. Please watch the accompanying video for a full impression of the experience.

Abstract

Humans incessantly manipulate objects in their environment. Yet,
mixed reality systems fall short of enabling seamless manipulations
of the physical scene, constraining experiences to virtual effects.
In this paper, we present the concept of Reality Promises, the
mixed-reality illusion of manipulating the scene in ways only vir-
tuality affords while secretly propagating virtual manipulations to
physical reality. By decoupling virtual modes of manipulations from
the physical mode of manipulation, Reality Promises create the
illusion of manipulating the physical scene instantaneously, using
magical forces or fantastical creatures. Concealed from the user,
our system directs a mobile robot that manipulates physical ob-
jects between dynamic virtual-physical decoupling and recoupling
points without revealing itself to the user. To render the robot invis-
ible and physical objects interactable, we introduce a robot-aware
3D Gaussian splat rasterization, shading, and animation system
that renders splats co-aligned with the local space into the user’s
passthrough view where needed. We systematically derive interac-
tion protocols that provide cohesive end-to-end user experiences,
such as materializing objects out of thin air or applying user or
character-induced virtual forces to physical objects.

CCS Concepts

• Human-centered computing → Mixed / augmented reality;
• Computing methodologies→ Computer graphics; • Hard-

ware→ Sensors and actuators.
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1 Introduction

Mixed reality (MR) systems enable users to experience fantastical
virtual content in their known environment. However, seeing physi-
cal laws apply to the physical scene at all times inhibits MR’s poten-
tial for experiences with a touch of magic. In this paper, we propose
to create the illusion of breaking down the limits of physical laws
while preserving the sensation of being in physical space by means
of virtual-physical decoupling illusions. In contrast to previous works
in MR [33, 39, 72], which have used perceptual manipulations to
produce visual effects of manipulating the world, virtual-physical
decoupling illusions simultaneously manipulate user perception
and physical reality, thereby also producing physical effects.

Our core idea is to branch the user’s perception of physical real-
ity from the current state into a promised reality, which they can
manipulate in ways only virtuality affords, while concurrently and
concealed from the user reproducing the physical effect of their vir-
tual manipulation into the physical world. A virtual manipulation
creates a Reality Promise that is only resolved once the manipu-
latory effect is physically fully replicated. To physically fulfill the
promise, an invisible mobile robot sets into action and performs
the physical manipulation by picking up an object, moving it to the
promised position and orientation, and placing it again, all without
exposing itself to the user. At the same time, mediated by their
video-passthrough MR headset, the user perceives a branched ver-
sion of physical reality in which it is not a robot, but a virtual cause
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of motion that moves the object to its promised pose. Fig. 2 shows
how a virtual bee in a promised reality drops a virtual object, tightly
synchronized with the drop by the invisible mobile robot. Seconds
later, the promise will be fulfilled, and the virtual object can be
recoupled into its physical counterpart again, thereby re-entering
full physical reality. Based on the Reality Promise illusion, we
demonstrate four distinct end-to-end user experiences.

In aMagicMake experience, a user seeing their physical desk and,
for example, working in an MR office setup can pinch their thumb
and forefinger to spawn a MagicMake menu out of thin air. They
can flick through the menu until they find an item of their liking,
for example, a bottle of coconut water. They can then pull the object
out of the menu, place it onto the desk, and then either continue to
work on their virtual office panel or start observing how the bottle
materializes in front of their eyes until an auditory notification
confirms that they can grab the coconut water and drink from
it. In a Seamless MagicMove experience (shown in Fig. 1), users
can reach out for physical objects in the distance and, seemingly
telekinetically, instantlymove them through space. Aminute later, if
they were to stand up and walk to the place where they dropped the
object in the distance, theywould find that it had, in fact, changed its
place. In a De- and Rematerializing MagicMove experience, the user
can take a tissue from a Kleenex box on the coffee table, then point
to the box, and perform a gesture to move it back onto the shelf
in the distance, then see how the box progressively dematerializes
from the coffee table and re-materializes in synchrony on the distant
shelf. In a Character MagicMove experience, the user can observe
how a virtual bee suddenly flies into their view, snatches away the
physical chips container the user just ate from to remind them of
their diet, and moves it back to a distant, maybe healthier, place.

These experiences, enabled by our Reality Promise system, are
based on two underlying technical components. Our Skynet com-
ponent provides fine-grained control for the mobile manipulator
robot, tightly integrated with the virtual interaction system and
synchronized in lockstep with the user experience. We built Skynet
with cheap, yet reliable inside-out robot tracking that shares the
coordinate system of the user’s headset. Skynet’s full-scale navi-
gation system enables navigating the shared room and reaching
inverse kinematics (IK) targets that are distributed across different
surfaces in the scene. Skynet’s event monitoring and prediction sys-
tem provides high-resolution information about the robot’s current
and planned state over time, thereby informing various interaction-
relevant components such as object animations, character anima-
tions, or user-facing status notifications.

To visually hide the robot from view, our SplatiMate component
performs real-time, untethered, on-device robot-aware 3D Gauss-
ian splatting to project a previously captured splat into the user’s
co-aligned passthrough view where needed. By leveraging Skynet’s
real-time information about the robot’s current pose and its joint
configuration, SplatiMate obtains the robot’s visual-structural con-
trol points in 3D space, and from this, chooses the required subset of
splats from the overall splat geometry that can hide the robot. Our
dedicated stereoscopic vertex and fragment shader pipeline renders
the splats coherently onto passthrough, smoothly feathering into
the physical scene outside of the robot’s vicinity. SplatiMate also
enables object animations such as the de- and rematerialization
effect or pop-up effects as used in the MagicMake menu.

Figure 2: Virtual-physical decoupling and recoupling points

are points in time and space where physical reality splits into a
promised reality or merges with it again. At the shown recoupling
point, the bee drops the promised object virtually and in synchro-
nization with the robot dropping the physical counterpart.

Our RealityGoGo interaction technique allows users to communi-
cate their manipulation intent to the system. It implements physical
object selection through a point-and-pinch gesture as well as object
placement through an input-amplified reach-and-drop gesture.

Contributions

In summary, we contribute
• the novel concept and design space of Reality Promises for virtual-
physical decoupling illusions which manipulate space and per-
ception simultaneously in video-passthrough mixed reality,

• three distinctMagicMove and aMagicMake end-to-end illusionary

experience enabling the motion or creation of matter in ways
only virtuality affords while physically replicating the user- or
character-evoked effects,

• the interaction-synchronized mobile robot control engine Skynet

providing user-co-aligned mobile robot manipulation with inside-
out tracking, navigation, inverse kinematics, event monitoring,
and prediction in tight synchronization with the experience,

• the on-device & standalone 3D Gaussian splatting system Splati-

Mate, which introduces the concept of robot-aware multi-cone-
casting for visually hiding the mobile robot and rendering object
animation effects, enabled via a dedicated implementation in a
stereoscopic and efficient splat vertex and fragment rasterization,
shading, and animation pipeline, and

• theMR-specific object selection and placement interaction technique

RealityGoGo enabling users to grab distant objects and drop them
on distant surfaces through surface-aware amplification.

2 Related Work

In the following, we review previous research on virtual-physical
divergence in virtual reality (VR) and in mixed reality (MR) and
briefly consider research that used MR for high-level robot control.

2.1 Virtual-Physical Divergence in VR

Divergence in VR without Physical Control. The divergence be-
tween the user’s perceived reality and the physical reality is at the
core of VR. The display fully substitutes the visual signals emitted
by the natural environment, controllers add otherwise physically
non-existent haptics, and speakers add only virtually perceived
sounds. Within this field, a dedicated branch of research [61] has
explored deliberately manipulating the visual sense to indirectly
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also manipulate other senses such as proprioception [49], thereby
aiming to induce an even stronger divergence between perceived
and physical reality. Redirected Touching [36] and Haptic Retarget-

ing [5] leveraged a warp field to offset the user’s virtually perceived
hand motion from its physical one, thereby aligning a passive prop
with a virtual object. Redirected Walking [51] employed rotation
scaling to systematically inject unnoticed virtual head rotations into
physical ones, thereby extending the perceived area of the virtual
environment. A perceptual manipulation, purely performed virtu-
ally, is found inMise-Unseen [42] which exploited visual inattention
to hide changes to the VR scene. RealitySkins [53] and Substitutional
Reality [54] repurposed the physical scene layout for virtual inter-
action. However, the divergence between perceived and physical
reality inducible by these approaches is limited, given that sensory
disagreement increases with divergence, thereby eventually raising
the user’s awareness of the illusions at play.

Divergence in VR with Physical Control. Therefore, following the
vision ofMcNeely’s robotic shape displays [43], research has instead
explored adapting the user’s physical environment to the virtual ex-
perience. Snake Charmer [3] used a robotic arm to spatially align a
physical proxy to a virtual object. VRHapticDrones [24] used a drone
for force feedback, and Beyond the Force [1] leveraged a drone for
object qualities beyond force feedback. InflatableBots [21] suggested
inflatable tubes mounted onto an actuated base. RoomShift [57] pre-
sented a swarm of furniture-moving robots that enables a number of
interaction designs from embodied to controller-based interaction.
HapticBots [59] and UltraBots [16] used small table-top robots to
emulate a large haptic surface via touch or ultrasound, respectively.

Conceptually, our work differs in that it is concerned with MR
instead of VR. While works in VR usually aim to induce maximal
divergence between the virtual experience and the physical reality,
only converging the two when needed for the haptic illusion, con-
versely, Reality Promises aim to maximally preserve the user’s
experience of being in physical space, only diverging physical and
virtual reality when needed for the illusion. Technically, Reality
Promises therefore differ in their need to visually remove the ro-
bot, necessitating our contribution of robot-aware 3D Gaussian
splatting for passthrough MR, not found in VR-related works.

2.2 Virtual-Physical Divergence in MR

Divergence in MR without Physical Control. Within the broader
field of MR, diminished reality visually removes content from view
[12, 22, 45, 46]. SceneCtrl [72] enables selecting, moving, deleting,
and copying objects in the scene. Remixed Reality [39] shows a real-
time reconstruction of the user’s space in VR, captured through
Kinect cameras andmanipulable through an underlying voxel-based
data structure. Annexing Reality [23] overlays physical objects with
virtual representations. TransforMR [32] transforms a scene’s se-
mantics by visually replacing physical objects with virtual alterna-
tives while matching the pose. Scene Responsiveness [33] enables
the illusion of virtual control over physical space through forces or
characters. Asynchronous Reality [17] enables users to remain in a
physical space representation while only passing through physical
space manipulations, e.g., objects delivered to the user’s desk, in
suitable moments by mediating the visual signal as required.

Reality Promises share the property of Asynchronous Reality
and Scene Responsiveness to programmatically bring objects in and
out of the user’s experienced–seemingly fully physical–reality as
needed. However, in contrast to all aforementioned works, Reality
Promises also exert physical control over space by purposefully
directing a mobile robot as needed, tightly synchronizing robotic
actions with perceptual modifications.

Divergence in MR with Physical Control. Only a few works have
considered inducing virtual-physical divergence in MR while actu-
ating the scene simultaneously. Fabre et al. [14] use an AR headset
to overlay an avatar over a chess-playing robot arm. Chen et al. [9]
showcase the use of a co-aligned point cloud to “look through” a
wall and control a robot in a neighboring room. Reality Rifts [10] in
“analog reality” (not MR) aim to create divergence between percep-
tion and physicality by showing physical effects without physical
causes through various hidden actuation mechanisms; however,
this is not applicable to moving objects to user-selected drop po-
sitions. Sugimoto et al. [55] propose the use of diminished reality
to partially “un-occlude” the task space of a robot occluded by the
robot itself. Similarly, Plopski et al. [48] and its follow-up work
in Taylor et al. [60] demonstrate the use of diminished reality to
un-occlude a window occluded by a robot arm. Likewise, Cosco et
al. [13] un-occlude the table on which the table-top robot is situated.

Similar to the last three described works, Reality Promises
hide the robot from view. However, our work differs in multiple
ways. First, we aim to enable end-to-end illusionary user experiences,
where we do not only remove the robot but also aim for substitu-
tion of an object’s cause of motion. Second, our three variants of
MagicMove experiences therefore have control not only over the
visibility of the robot but also the visibility of the objects of interest,
toggling them in different places between physical, virtual, and
hidden visibility across different phases of the interaction to obtain
believable decoupling and recoupling illusions between the virtual
and the physical world. Third, our MagicMake experience, enabling
to seemingly materialize objects out of thin air, is another result
of our experience focus, not realizable with techniques in previous
works. Fourth, our need for tight interaction synchrony necessitates
not only controlling and monitoring robot motions and events, but
also predicting robotic actions minutes ahead of time which in
turn informs various interaction-centric design components, such
as object animations, character animations, or user-facing status
predictions, none of which found in previous work. Fifth, interaction
centricity also leads us to implementing an interaction technique
that facilitates simple, yet seamless, situated grab and drop opera-
tions across arbitrary distances. Furthermore, because we aim to
operate at room-scale rather than table-top scale found in previous
works, our technical design differs fundamentally in further aspects,
namely, sixth, on the robot side, we address this room-scale objec-
tive by implementing a robotic pipeline that controls a mobile robot
with cheap, yet reliable inside-out, user-co-aligned robot tracking, a
full-scale navigation system, and thus accounting for IK targets that
can be distributed across different surfaces in the scene. And, on
the visual side, seventh, we address this room-scale objective with
our proposed robot-aware 3D Gaussian splatting pipeline instead
of relying on techniques which are applicable only in smaller-scale
scenarios such as image warping.
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Figure 3: Design space of Reality Promises. Reality
Promises enable a range of object interactions that can be triggered
and experienced in different ways. In this paper, we implemented
all design parameters and design values except implicit user-elicited
decoupling triggers.

2.3 Physical Control in MR without Divergence

All of the related work above aims to present a different reality than
the physical one to the user’s senses. In contrast, the intersectional
field of AR plus robotics has evolved into its own comprehensive
body of research that aims at augmenting robotic operation, rather
than manipulating perception thereof. Suzuki et al. [58] and Walker
et al. [63] present comprehensive frameworks for structuring the
breadth of the field. Applications reach from AR for trajectory
specification and monitoring [2, 19, 25], object-level manipula-
tion [20, 37, 65], robotic behaviors [7, 27, 29, 64], debugging [28],
sketching-based target state design [31], and remote collabora-
tion [26] to teleoperation [15]. Our work differs in that it creates
an illusionary divergence beyond augmentations.

3 Reality Promises for Virtual-Physical

Decoupling

In the following, we introduce a design space of Reality Promises
(see Fig. 3) and define our terminology and abstractions in virtual-
physical decoupling illusions.

Physical Reality. A video-passthrough head-mounted display
(HMD) enables users to continue visually perceiving their physical
reality while interacting with virtual content. At the same time,
they give control over every light ray that reaches the user’s eyes
and we leverage this to pass through visual information except in
a carefully selected spatiotemporal subset of reality. All of our pre-
sented interactions begin by passing through unmodified physical
reality to the user, potentially augmented by a non-immersive vir-
tual application, such as a text editing app. Despite working on the
app, the user remains aware of their physical reality and its objects.

Object-Body Interaction Value & Object-Body Proximity Change.

Different objects offer interactions with different interaction values

(see Fig. 3, top middle). Interactions with intrinsic value require
bodily contact with the object, including consuming one-time use
goods such as drinks or medication, or using reusable objects such

pre-promised reality

pre-manipulation physical promise fulfillment

promised reality 
showing virtual promise fulfillment

promise createdpromise rejected

post-manipulation

system-
triggered
recoupling 
event

promise 
fulfilled

t

b

degree of
virtual-physical divergence

user-
initiated
decoupling
event

diverging
converging

physical reality branch

promised reality branch

Figure 4: Timeline of a Reality Promise. By decoupling
a virtual object from its physical counterpart, physical reality is
branched into a pre-promised reality.As the user commits to a virtual
manipulation, a Reality Promise is created and the user enters
a promised reality. During physical promise fulfillment, the user is
shown a substituting virtual promise fulfillment. Recoupling joins
both branches, merging the virtual object seamlessly into its now
again pose-equivalent physical object.

as books or glasses. In contrast, for many objects, the user is not in-
terested in the tangible interaction with the object itself but instead
the interaction’s outcome, such as tidying up, moving decoration, or
opening a window. These interactions have extrinsic value where
the user’s intent of the object interaction can be fulfilled outside
of their proximity. Intrinsic interactions require body proximity
(see Fig. 3, top left) and therefore, assuming a stationary user, entail
the object’s distant-to-local manipulation (summoning), the local
interaction, and potentially a local-to-distant manipulation (banish-
ing) to move it away again. Extrinsic interactions merely require a
distant-to-distant manipulation (relocation).

Virtual-Physical Decoupling. As shown in Fig. 4, we want to
enable the user to branch from the current state of physical reality
into a subjectively different reality by decoupling a virtual replica
object from its physical parent. In this decoupled branch of reality,
the user applies virtual manipulations to the object, which are then
replicated physically outside the user’s perception. Virtual-physical
decoupling begins with a decoupling trigger (see Fig. 3, top right).

We distinguish between user-elicited and narrative-elicited trig-
gers. Narrative-elicited triggers might include a virtual character
in a situated MR game that evokes the illusion of manipulating a
physical object. Within the area of user-elicited triggers, we further
distinguish between implicit and explicit triggers. Implicit triggers
range from simple spatial triggers (such as taking a seat on a couch
to trigger teleportation of a chips container) to more involved inter-
pretations of user behavior (such as inferring thirst in a user based
on their water intake). Explicit triggers include the use of gestures,
virtual menus, or speech input.

As soon as decoupling is triggered, the object of interest “splits
up” into a physical object and its virtual counterpart making them
manipulable independently from each other. We distinguish be-
tween different decoupling modes (see Fig. 3, bottom left). In removal

mode, we first hide the physical object from view with the object
removal technique, also used to hide the robot. Then, a virtual ob-
ject is added at the pose of the physical object. As the virtual object
starts being manipulated, e.g., floating toward the user’s hand, it ap-
pears to be leaving only an empty space, thereby strengthening the



Reality Promises UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

illusion that the user has control over physical reality. In augmented

mode, a fully transparent virtual clone is overlaid on the physical
object. It becomes opaque only when the user initiates manipula-
tion, transitioning into view over the first few centimeters of the
animation path to evoke the sense of extracting a “shadow version”
while leaving the physical object visibly behind, thus reinforcing
the perception of diverging into an envisioned reality.

Reality Promises & Promised Reality. In programming language
design, the concept of asynchronously executed promises has been
invented and defined as a placeholder for a computation result that
will exist in the future [18, 40]. Inspired by this, we define a Reality
Promise as a placeholder for a physical manipulation result that
will exist in the future. As soon as the user commits to a virtual
manipulation, the system creates a Reality Promise that will rec-
oncile the induced discrepancy between perceived and physical
reality. In our system implementation, a mobile robot navigates to
the object of interest, acquires it, transports it to the target location,
and places it as specified by the Reality Promise. We refer to this
as physical promise fulfillment. Simultaneously, the system presents
an alternative cause of motion to the user’s eyes. We refer to this
as virtual promise fulfillment. Both the user’s perception and the
system thereby enter an integrated promised reality as the promise
is created, transitioning from a phase of virtual-physical divergence
to a phase of virtual-physical convergence (see Fig. 4, bottom).

Pre-Promised Reality. Just picking up an object does not yet de-
clare a desired target state, and therefore nothing can be promised
yet. Only by dropping the object does a user commit to a virtual
manipulation. Therefore, we distinguish between a pre-promised

reality, which takes the role of a “reality workspace”, and promised

reality. This is analogous to promises in programmingwhich require
instantiating of a promise data structure, before their invocation.
To prevent rejection of a non-fulfillable promise, we employ a recti-
fication step after the user releases the virtual object, which moves
it to the closest valid pose, uprighting it along the gravity axis and
moving it onto the closest subjacent robot-reachable surface.

Physical Promise Fulfillment via an Invisible Mobile Robot. While
physical manipulation could also be performed by humans or actu-
ated objects, our system implementation automatically controls a
versatile mobile robot.We visually remove themobile robot through
a graphics pipeline, thereby obtaining an invisible mobile robot.

Virtual Promise Fulfillment via Equifinal Causality Substitution.

A Reality Promise specifies the object’s source and target pose.
While physical reality is being manipulated, we simultaneously
fulfill the promise virtually (see Fig. 3, bottom right). Visually re-
moving the robot and the physical object (in removal decoupling
mode) enables the substitution of the physical cause of motion for a
virtual cause of motion. All conceivable causes of motion must start
at the current physical state and lead to the same finally observ-
able physical outcome, defined by the Reality Promise, thereby
changing the mode of the manipulation, but not the mission of the

manipulation. Thus, we refer to the virtual promise fulfillment as an
equifinal causality substitution (see Fig. 5). The virtually presented
cause of motion, be it materialization or a monster, can be tempo-
rally synchronized with the robot’s physical fulfillment, making

Figure 5: Equifinal causality substitution in MagicMove. A
reality promise transitions physical reality from one physically
valid state into the next, while showing any virtually conceivable
modes of transitioning in between by replacing the physical cause
of motion for a virtual cause of motion.

sure that both the virtual and the physical object are delivered not
only to the same point in space but also at the same point in time.

The virtual promise fulfillment phase itself is subdivided into
two sub-phases: Before the robot has acquired the physical object of
interest, the object has to be visually removed or augmented. After
the robot has acquired it, we can reveal the physically empty space.

Virtual-Physical Recoupling. Once the promise has been fulfilled
both physically and virtually, it can be resolved by recoupling the
virtual object into its physical counterpart. In practice, we smoothly
fade out the virtual object over 5 seconds, thereby cross-dissolving
the promised reality into the passthrough view, now showing the
physical object at the same pose.

4 End-to-End Experiences

In this section, we develop two distinct types of end-to-end user
experiences, MagicMove and MagicMake, informed by our afore-
described design space and implemented in our system.
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Figure 6: Interaction breakdown of the three variants of MagicMove experiences. For a clearer illustration, this figure shows a
comparative view with the same source and target poses across all experiences. For each experience, we show the user experience view
(square images) and a close-up view (circle images) as well as the experience-specific design space choice (rounded gray boxes). All views
were captured on the HMD and are unedited. Circle images revealing a hidden robot or hidden object were captured on device with the
reveal lens (dashed virtual-physical separation lines added post-hoc). Screengrabs were taken across multiple runs to collect different views.

4.1 MagicMove
In the following, we present our three MagicMove variants, an
overview of which is shown in Fig. 5, with a detailed breakdown of
interactions presented in Fig. 6. We also relate each experience to
the design space parameters (marked in italics) and outline their
interaction protocols (where labels refer to Fig. 6).

4.1.1 Seamless MagicMove.

Design Rationale. We design Seamless MagicMove to evoke the
illusion that users can telekinetically move objects by gestures.
Therefore, we choose a point-and-pinch gesture as a decoupling

trigger, hiding the physical object as soon as the user starts in-
teracting with the object of interest via removal decoupling mode.
This pretends the virtual gesture is the cause of object motion and

therefore we show no other virtual promise fulfillment. Seamless

MagicMove is designed to evoke the feeling that the user already
“lives” in their promised reality. Once completed, the user’s senses
never experienced sensory disagreement about the physical where-
abouts of the object. Because this experience provides no inherent
visual cues of whether a virtually manipulated object is already
tangible or not, it suits distant-to-distant manipulations that do not
enter body proximity and have extrinsic interaction value.

Interaction Protocol. a The user targets the physical object. Using
standard selection cone-casting, the most likely object among all
selection targets is detected and indicated with a dashed line. b A
thumb-index finger pinch instantaneously hides the physical object
visually and inserts the virtual counterpart at its place. c At the
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same time, the virtual object starts floating to the user’s hand,
seemingly leaving only an empty space in the shelf ( c , left circle).
The reveal lens ( c , right circle) shows that the physical object is
just hidden behind a small visual patch that locally occludes the
passthrough view. d The user uses our surface-aware amplification
technique to reach out to the distant desk in order to drop the
pre-promised object. A small green disk on the surface ( d , circle)
confirms the validity of the drop position. As soon as the user
releases their pinch, the object smoothly moves and rotates onto
the closest subjacent surface, thereby ensuring robotic reachability
and correspondence with the robot’s grasping affordance. e The
invisible mobile robot has navigated toward the physical object,
grasped it, and, as shown in e , is on its way to deliver it. As soon as
the robot picked up the physical object from the shelf, the occluder
patch is disabled, thus revealing the now physically empty shelf.
f The robot is positioning the physical object at the exact same
pose as the virtual promise object. The reveal lens ( f , circle) shows
the robot at its full extension, a split second after placing the object.
g Invisibly, the robot drives to its home position, while the physical
object is now at the promised pose.

4.1.2 De- and Rematerializing MagicMove.

Design Rationale. We design De- and Rematerializing MagicMove

for summoning objects that the user intends to touch and use. There-
fore, we again employ a point-and-pinch-gesture as a decoupling
trigger, however, this time designed for distant-to-local manipu-
lations that enter body proximity for intrinsic interaction value.
Consequently, we use a de- and rematerialization animation for
virtual promise fulfillment that conveys the promise is ongoing and
how much of it remains. To deepen the materialization metaphor,
we show a preparatory scanning-in effect at the physical object
pose and scanning-out effect at the virtually promised object pose,
only starting the actual de- and rematerialization effect once the
robot has acquired the physical object. This allows us to use aug-
mented decoupling mode. The scanning-in effect ends as soon as the
robot acquires the object, switching over to the de-materialization
animation at the now physically empty space.

Interaction Protocol. a We employ the same gesture-based se-
lection technique as before. b Again, as the user selects the ob-
ject by pinching, a virtual object is inserted at the place of the
physical object; however, fully transparent so that the user does
not see it yet. Only as the virtual object starts animating toward
the user’s hand, it gradually becomes opaque across the first few
centimeters of its animation path, thereby creating the impres-
sion of pulling out a “shadow version” from the physical object.
c Again, using our surface-aware amplification technique, the
user reaches out to a valid surface and releases it above, causing
the object to rectify onto the subjacent robot-reachable desktop.
d We then set the virtual object’s materialization progress to 0%
and, additionally, expand a small duration indicator next to the
object, showing the estimated time of arrival (ETA), in this case, the
time to full materialization of 72 seconds as depicted ( d , left circle).
Simultaneously, we add a fully dematerialized virtual copy at the
pose of the source object, setting its de-materialization progress to
0% ( d , right circle). Then, both objects start to animate an “empty”

scanning effect using a slicer sliding up and down along the ob-
ject until the robot acquires it. The robot immediately sets into
motion, and therefore the ETA countdown begins decreasing ac-
cordingly. e As soon as the robot has picked up the object, we
switch to the completion animation where the virtual promise ob-
ject and virtual object at the source pose are synchronized with the
progress between pick-up and placement. At the state depicted ( e ,
left circle), the robot has covered approximately 40% of its robotic
sequence since pick-up, and thus the colored part of the materi-
alization covers approximately 40% of the object’s height, while
the ETA prediction shows 22 seconds. The slicer continues oscillat-
ing between the unfinished volume of the object until completion.
The de-materialization of the virtual object at the source pose ( e ,
right circle) is informed by the same progress information, thereby
showing the inverse volume of the object. f The robot delivers the
object to the promised pose. Tightly synchronized, the promised
object has fully materialized and the ETA prediction has decreased
to 0 seconds ( f , left circle). The virtual object at the source pose
has fully dematerialized. g Within 5 seconds of stowing its arm
and while invisibly navigating back home, virtually presented and
physical reality can be recoupled by fading out the now fully mate-
rialized virtual promise object into the physically delivered object.
The virtual object at the source pose has also vanished, leaving only
the empty shelf behind, making the illusion of de- and rematerial-
ization perfect. The physical object is now at the promised pose.

4.1.3 Character MagicMove.

Design Rationale. We design Character MagicMove to give vir-
tual characters such as virtual pets, creatures, virtually embodied
assistants, or a bee in our implementation, control over physical
space. The character’s interaction serves as a decoupling trigger and
immediately invokes removal decoupling mode. Because the bee can
withhold the promised object during the pending promise, it inher-
ently prevents the user from trying to interact too early with the ob-
ject, therefore suiting objects with intrinsic and extrinsic interaction
value. By freely choosing its path, it covers any proximity change.

As soon as the experience starts (in our implementation, a con-
troller button press), the bee flies toward the virtual object, grasps
it, and brings it to a promised pose. In contrast to the previous
MagicMove interactions, in this experience, the user does not neces-
sarily know where that promised position is. Instead, only the bee
(programmed by our system implementation) knows the promised
pose, and therefore surprises the user by the actual drop location.
We amplify this surprise by not finding the shortest path between
source and target pose, but a seemingly random path, changing
course a few times mid-way.

This faked randomness draws inspiration from the concept of
forced choice used by magicians that pull out a seemingly random
card from the card deck to then reveal it is the predicted joker card.
Apart from our aim to increase the sense of magic, more practically,
it also stretches the path the bee takes to as long as is needed for
the robot to physically perform its manipulations. Of course, like
the magician who carefully engineered his hand motions and made
his choice already, under the hood, our system fully specifies the
promise as soon as the bee acquires the object.
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Interaction Protocol. a The bee flies toward the physical object.
b As soon as it reaches it, the physical object is visually removed
from view and its virtual counterpart is rendered at its place. c The
bee leaves with the attached object, leaving behind a seemingly
empty shelf ( c , left circle). The reveal lens ( c , right circle) shows
that the physical object is still in its physical place, just hidden from
the user’s view. d The bee flies in a non-straight path through the
room. In the figure, we show a screengrab toward the end of the
path. e While the bee flew in a more or less constant speed up
to this, only varied slightly for more organic motion, at an ETA
of 2 seconds, the bee starts moving across the shortest path to the
promised pose, thereby ensuring exact spatiotemporal coincidence
between the physical object drop from the robot and the virtual
object drop from the bee. f In exact temporal synchronicity, the
bee and the robot reach the promised pose. g The robot drives
back to its home pose and the bee flies out of frame, disappearing
outside the user’s view frustum. The object materialized.

4.2 MagicMake
MagicMove interactions enable 1-to-1 object motions from a user-
selectable source pose to a promised pose. In contrast, our Magic-

Make interaction enables a 0-to-1 object manipulation where even
the source object’s pose is abstracted away behind a menu. Magic-

Make thereby provides the illusion of magically making matter out
of thin air.

Design Rationale. We design MagicMake with a menu as a de-
coupling trigger that can be expanded anywhere in space, through
a thumb-forefinger pinch. From the menu, the user can choose
objects that are out of sight, potentially even beyond the room, and
therefore out of scope for MagicMove. Objects obtained through
the menu will be manipulated from distant-to-local, entering body

proximity, and therefore likely also being of intrinsic interaction
value. As a result, we make use of our materialization animation
to communicate the status of promise fulfillment. Because the user
pulls the promised object out of a virtual menu, there is no visible
physical-to-virtual decoupling transition, however, if the user were
to walk to the source object’s pose, they would find the physical
object (if not acquired yet) in augmented decoupling mode.

Interaction Protocol. As shown in Fig. 7, a the user starts by
holding up their hand into empty space. b By pinching their fingers,
they spawn the MagicMake menu. The menu expands outward
from its round icon in the infinitesimal point of pinch to its full
size, oriented toward the HMD. c The user is not interested in the
Coke Zero and therefore flicks through the menu... d ...until finding
their object of choice. e They reach into the menu’s depicted
object and “pull it out” from the 2D panel into 3D space. Here, we
draw inspiration from Tony Stark’s holographic JARVIS interface
to discover a new element in Iron Man 2 (2010), which allows fluid
2D-to-3D object manipulation, and from the suitcase interaction in
the VR version of Resident Evil 4 (2021). f As soon as they drop the
object, it rectifies onto the subjacent surface and starts materializing.
The menu icon detaches and smoothly lerps and slerps to a pose
next to the object, facing the HMD, while the menu panel contracts
into an infinitesimal point again. g The promised object continues
materializing... h ...until materialization is fully completed, the ETA

Figure 7: The MagicMake menu enables materializing an object
out of thin air.

prediction becomes zero, and in sync, the invisible mobile robot
reaches out to physically fulfill the promise. i As the robot retracts
its arm with the intention of driving back to its home position, the
virtually promised object recouples into the physical object through
a fade-in. The user may reach out and have their drink, which the
robot delivered from the snack table in the opposite room side.

5 Architecture and Implementation

In this section, we outline our system architecture and implemen-
tation with its Skynet robotic component, SplatiMate Gaussian
splatting component, and RealityGoGo interaction component.

5.1 Skynet: Interaction-Synchronized Mobile

Robot Control

5.1.1 Architecture Decisions.

User Headset. We implemented our user application in Unity
2021.3 on macOS 14.7 and deployed it as a standalone application to
a commercial Meta Quest 3 device, featuring 2x 4 MP passthrough
cameras, without Quest Link or server offloading. It therefore runs
fully untethered, offering the user full mobility range. We dis-
able Quest’s Physical Features (incl. Boundary, formerly Guardian),
only re-enabling them when setting the floor height. The Quest
Passthrough Camera API is not needed.

Robot. For the robot, we chose Hello Robot Stretch 3, featuring
a 2+1 wheel differential drive in the mobile base, vertical lift with
a height adjustable to 120 cm (plus base) via a prismatic joint, a
telescoping arm horizontally extensible to 76 cm, and a 3 degrees
of freedom (DoF) gripper spreading its fingers to 15 cm left-to-
right and carrying up to 2.5 kg max payload. Inside the base, the
robot carries an onboard Intel NUC 12 Mini PC on which we run
the manufacturer’s firmware driver, ROS2, Nav2, and a rosbridge-
suite server with several custom ROS2 nodes for information flow
management. The base LiDAR and RGBD cameras are not needed
since we replace them as follows.
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Figure 8: Skynet’s system architecture comprises the user head-
set, the robot-tracking headset, and the robot. a○ The user headset
communicates with the robot and the robot-tracking device. b○
The robot-tracking device is another Quest 3 headset for inside-out
tracking. c○ It is attached to a custom 3D-printed mount.

Robot-Tracking Device. User- or character-defined drop poses
specify the Reality Promise, which has to be physically fulfilled
by the robot. This alone demonstrates and necessitates a shared
coordinate system between the user and the robot to convert a
user-relative pose into a robot-relative pose, which can then be
used for navigation and inverse kinematics (IK).

As one of the most advanced inside-out pose tracking systems
available, we chose to leverage another Meta Quest 3 headset purely
for its visual-inertial SLAM capabilities. Therefore, we modeled and
3D-printed a mount (see Fig. 8c) which we screwed onto the robot’s
head, providing tight grip after sliding in the robot-tracking headset
from overhead (see Fig. 8b). To prevent unintended sleeping, we
set the sleep time-out to 1h and taped off the proximity sensor.

Based on an ICP algorithm that aligns the point clouds of each
device, we leverage Meta’s shared spatial anchor infrastructure to
obtain an initial transform between both headsets upon app start-
up. Using this feature requires a Meta-assigned Quest app ID as
point cloud data is stored and computations are performed remotely
on Meta infrastructure for privacy assurance, and therefore, we
deployed our app once via the Quest developer pipeline for alpha
testing through the Quest app store. From then on, we reinstalled
the signed version via wire for faster iterations. Deploying the same
Unity application as we deployed to the user headset, we implement
and switch to pose tracking mode based on statically configured
device IP addresses, which streams its tracked 6 DoF headset poses
at 4 Hz via WiFi to the user headset. Based on this overall architec-
ture, we implemented a comprehensive pose transform pipeline for
navigational and joint kinematics control, which will be outlined
in detail in the next sections.

Communication. We connect all devices to the same local WiFi
network for communication. In summary (see Fig. 8a), the user head-
set initiates a shared-space session with the robot-tracking headset
and from then on receives robot headset poses, transformable to
user space, continuously. These poses, as well as all other mo-
tion commands, are sent to the robot base computer to update the

Figure 9: Skynet’s information flow for high-level robot con-

trol. Left: Skynet maintains a target robot state representation and
a current robot state representation directly on the headset, en-
abling full IK. Right: Based on a virtual object’s affordance, Skynet
plans, executes, and controls for a suitable rotation-aware path
under closed-loop feedback from the robot-tracking device.

navigation stack transform hierarchy and send joint trajectories
or fine-grained non-navigational motion commands. At the same
time, the most recently computed motion plan and the most re-
cently measured joint states are sent from the robot to the headset.
Taken together, the user’s headset has full information and control
about the robot’s current and planned state and actions.

5.1.2 Robot Joint Control.

Local IK: Custom Problem Setup. Assume the robot is standing on
the floor next to a table, which holds a physically promised object,
with the arm pointing toward it. Given an object’s grasp affordance
(i.e., the relative pose between gripper and object at the moment
of grasping), the local inverse kinematics problem asks for the five
robot joint parameters: vertical lift, horizontal arm extension, and
3 DoF gripper pose. Given the Cartesian design of the Stretch 3,
we can analytically obtain the 2 positional (lift, extension) and 3
rotational (yaw, pitch, roll) joint parameters through trigonometric
and vector-algebraic computations, without the need for numeric
IK optimization. We compute the yaw in case the affordance is not
perfectly aligned with the plane spanned by the arm and mast to
account for navigational imprecision.

Local IK: Headset-Based Solution. We perform these computa-
tions directly in our Unity user app. Furthermore, we visualize
the result of these computations by exporting the robot’s URDF
model from manufacturer-provided data, significantly simplifying
its mesh geometry for performance in Blender, simplifying the kine-
matic chain hierarchy, and importing it into our user app. As can
be seen in the virtual debug mode in Fig. 9, left, given a desired
grasping end-effector state (visualized in the HMD by a gripper
with co-located coordinate frame axes in the left of the screengrab),
we can thereby accurately compute the state of the robot’s target
state in the HMD (left robot representation in the figure). Even if
the desired end-effector state is out of reach, the best possible state
will be computed, leaving only the irreducible IK residual.

Real-Time Implementation: Virtuality-Guided Servoing. Given this
target state, we send the computed joint parameters to the physical
robot, more specifically to the ROS trajectory action server. While
the physical robot performs these actions, in real-time, we obtain
the live state of the joints from the robot (see Fig. 9, left, right robot
representation). As we will detail later, we make use of this current



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Kari and Abtahi

Figure 10: Skynet’s state machine for a pick-and-place se-

quence in debug mode. a○ The best object-annotated affordance
serves as an IK goal. b○ The robot is on its way to drop the pre-
viously acquired Kleenex box (see gripper). The state machine,
visualized in debug mode as a text box next to the vertical mast,
is maintained directly on the user headset. The red lines, added
post-hoc, show how the state machine’s ETA prediction flows di-
rectly into the materialization animation (top line: remaining in
current step + sum of duration of remaining steps, flowing into the
ETA prediction indicator; bottom line: progress in percent). c○ The
robot delivers the object in sync with the materialization effect.

state representation to compute the accurate occlusion geometry
that will visually hide the robot for the Reality Promise illusion.

5.1.3 Robot Navigation Control: From Hand Drop Gesture to Wheel
Actuation. In our aforementioned local IK approach, the mobile
base pose is presumed fixed. To also move the robot across the
2D map, we expand the above to a global IK approach by first
computing an optimal base pose for a given end-effector goal, and
second, navigating toward the computed pose, building on our
initially proposed robot-tracking setup.

Computing an optimal base pose given an end-effector goal. A
Reality Promise specifies a promised object’s source pose and
promised pose. By annotating the grasping affordance for each
virtual object representation (see Fig. 10a) in Unity at design time,
and by then aligning these objects with the physical scene after
app start-up, the user app is aware of the end-effector goals as a
user picks up an object at the annotated poses, or drops an object
onto an arbitrary surface, maintaining coordinates in user-tracking

space. Making simplifying assumptions to resolve base pose under-
determination (arm extension always at 40 cm, gripper yaw always
at 0◦), we can compute the remaining 3x 1 DoF joint parameters via
trigonometry and vector algebra and convert them into joint trans-
form matrices. Finally, we traverse the kinematic chain backwards,
obtaining the base pose in user-tracking space.

Navigating toward the computed pose. Given a base pose in user-

tracking space, we need to actuate the two drive wheels. To this
end, we first convert the base pose in user-tracking space to a
base-pose in robot-tracking space using the shared spatial anchor
transform between user and robot headsets, which we obtained on
app start-up. The robot’s root joint, i.e., the mobile base, itself is
also tracked in robot-tracking space and continuously updated by

Figure 11: Skynet’s event prediction & monitoring system is
tightly coupled with the rendering and virtual interaction system.

the robot-tracking headset. However, we aim to perform the motion
planning as well as the low-level navigation control on the robot
base computer in ROS2 Nav2. Therefore, we convert the continu-
ously forwarded robot positional vector and rotational quaternion,
and the computed optimal base pose from Unity’s coordinate con-
vention (x right, y up, z forward) to Nav2’s convention (x forward,
y left, z up), before sending this computed pose representation to
the robot computer. We fuse the continuously streamed robot pose
with the wheel+IMU odometry transform in a custom ROS2 tf
hierarchy broadcast node, however, resetting the relative transform
with each headset-tracked pose update, thereby enabling dead reck-
oning. Navigational targets are sent to ROS2’s NavigateToPose
action server. As shown in Fig. 9, right, for debugging purposes,
at 1 Hz, we obtain the most recent navigation trajectory, apply
the inverse convention and transform sequence, and display the
trajectory in the user headset.

5.1.4 Promise-and-Robot Integration.

End-to-End State Machine. The aforedescribed navigational and
joint kinematics computations provide all building blocks for a
full home-to-acquisition-to-drop-to-home sequence. We design a
comprehensive finite state machine, maintained in the user app and
shown in Fig. 10b. The current idle pose is considered the home
pose. As soon as a Reality Promise is defined with its promised
object’s acquisition and drop pose, the robot transitions into a nav-
igational state (coarse NAVing) with acquisition intent, performs
a fine-grained corrective rotation at the reached base pose target,
extends to its full grasp position through a sequence of individ-
ual joint actuation states, and repeats the same procedure with a
gripped object, now under drop intent, until finally dropping the
object (see Fig. 10c), switching to idle intent and driving back to its
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Figure 12: SplatiMate’s photometric alignment between the
captured splat scene and the passthrough view accounts for color
differences in the images from the iPhone capturing camera and
the Quest passthrough cameras.

home pose to additionally set and remain in the idle state. We add
intents as an orthogonal stateful variable, which allows the state
machine to distinguish, e.g., between navigating to acquisition vs.
drop pose, while reusing the same states and transitions.

Event Monitoring and Prediction. Reality Promises not only re-
quire end-to-end execution of the pick-and-place sequence, but also
an event system that is tightly integrated with the robot operation
and predicts and triggers actions, based on expected and actual ac-
quisition and drop events. As detailed in Fig. 10b, we can compute
the ETA to the acquisition or drop event through summation of the
estimated duration remaining in the current step plus the estimated
duration of all remaining steps. For nearly time-invariant steps, we
collected a look-up table providing reference durations, and for nav-
igation, we assume a velocity of 0.3 m/s across the navigation plus a
constant of 5 seconds to account for rotations in the path segment’s
start or end pose. As shown in Fig. 11, based on the ETA and the
elapsed duration, we can inform the ETA indicator and compute the
overall progress, which informs the materialization degree in the
respective MagicMove and MagicMake experiences. For Character
MagicMove, this progress represents the route progression degree
of the bee character along its path of faked randomness. As soon as
a state machine transition fires an acquired or dropped event, the
respective virtual objects at the source and target pose react with
their interaction-specific visual recoupling events.

5.2 SplatiMate: Robot-Aware 3D Gaussian Splat

Rasterization, Shading, and Animation for

On-Device Mixed Reality

To hide the robot and physical objects from view, we implement
SplatiMate, an on-device 3D Gaussian splatting system for MR.
SplatiMate renders the splat from the perspective of each eye, how-
ever, only in the pixel neighborhood where the entity to be hidden is
seen by the user. Furthermore, we design SplatiMate to render inter-
actable objects, also implementing a custom shader for animating
de- and re-materialization effects. SplatiMate can rendermultiple ob-
jects jointly, compositing them properly with each other, and alpha-
blending the result correctly into passthrough, thereby obtaining a
view in which the robot and physical objects are concealed and vir-
tual objects are animated. In the following, we outline the process
from splat preparation to splat rendering, and point to the various
adaptations from standard Gaussian splatting [35] for our purpose.

5.2.1 Splat Preparation.

Step 1: Object & Space Reconstruction. We first captured the space
(ca. 200 images) and objects (ca. 15s videos) using an iPhone 14 Pro.
We train the splat in Jawset Postshot (v0.5.146), using the MCMC
profile, and cap the splat count at 25k splats for scenes and 3k-5k
for objects. Training the splat scene takes ca. 3 min, preceded by a
camera pose estimation that runs for ca. 10 min. Our implemented
renderer is able to properly handle 100k splats without frame drops.
However, we cap the splat count for scenes and objects as outlined
above to leave sufficient computational budget on the GPU for both
removal splats and multiple virtual object splats, animations, feath-
ering in the vertex shader, screen recording, and Unity overhead.
Fig. 12, step 1, shows the training result for the space reconstruc-
tion from a bird’s eye view, rendered for illustration in SuperSplat
before exporting to the headset. All interactable objects, shown in
the figures of this paper, are also splats.

Step 2: Rectification. The resulting training artifacts lack a mean-
ingful root origin and orientation, and due to depth ambiguity in
monocular structure-from-motion, they lack meaningful scale. We
measure the objects and space, using a laser range finder for the
space, and then, in Blender, employ a Splatting add-on [8], to scale
them accordingly, align them upright along the positive y axis, and
position them on the xz plane front facing along the z axis. We
also cut out excess geometry before exporting a rectified splat. In
a custom Python preprocessing script, we convert both the posi-
tion vector and the rotation quaternion of each splat instance from
Postshot’s coordinate system in OpenGL convention (x right, y up,
z backward) to Unity’s coordinate system. Furthermore, in Python,
we compute the covariance matrix for each splat instance’s scale
and rotation ahead of time, thereby taking load off the GPU at
runtime. We write out all splats in a CSV data format, more easily
readable in Unity than splat PLYs.

Step 3: Color Grading for Space Splats. The difference between the
iPhone camera’s response function and the passthrough camera’s
response function leads to different photometric qualities: the ren-
dered scene looks different than the passthrough view.We therefore
aim to color-grade the splat such that it matches the passthrough
appearance. To this end, we render the full splat from a view in the
headset (see Fig. 12, step 2) and, capture the same view with the
passthrough cameras (see Fig. 12, step 3). As can be seen in Fig. 12,
step 3, the passthrough cameras use less range than the rendered
splat (which mirrors the iPhone’s higher dynamic range images).
Using Adobe Premiere’s Lumetri view, we load both images, use
tone curves to match the RGB parade scopes and the overall appear-
ance, and export the Premiere’s .look file. Fig. 12, step 5, shows the
matched image, which closely resembles the actual passthrough
view in step 3. Discarding the image itself, we then apply the same
tone curve to all individual splats in the scene in Python, and export
a rectified and color-matched splat.

Step 4: End-Effector Annotation for Object Splats. In Unity, we
annotate the end-effector position for object splats and add grab
manipulability to object splats and the space splat, so that the scene
can be aligned on app start-up. Overall, preparation across these
four steps totals ca. 4h.
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Figure 13: SplatiMate’s robot-aware cone-casting finds all splats that must be rendered to cover the robot in view. a○ Side view showing
how we cast a cone toward the robot from the left eye. b○ User-aligned view from slightly above the headset’s left-eye display showing the
cone along its central axis. c○ Bird’s eye view showing how the cone automatically tracks the robot as it moves. For simplified illustration,
we only show the vertical cone, covering the robot from base to head, omitting the horizontal cone covering the arm, and reduce splats to
regular spheres (big red inside the cone, small gray outside) disregarding Gaussian covariance information and color.

5.2.2 Splat Rendering.

Standard Splat Rasterization. We first implemented a custom
minimal reference implementation in an OpenGL shader (approx.
500 lines of code in python, of which 150 are GLSL shader lines),
consulting existing third-party [34, 70] and original author [35] im-
plementations for splatting and underlying techniques [73]. Then,
we manually translated them line by line into Unity’s high-level
shader language (HLSL), in the process introducing changes for
stereoscopic, asymmetric-eye-frustum, passthrough, convention-
specific rendering, and differences in gamma correction handling.
To account for the lack of geometry shaders and quad meshes on
Quest, we use two triangles with 6 corners, 2 of which are shared,
to represent the splat quad, thus constructing a “pseudo-mesh” with
4 times as many vertices as splats. We pass splat positions, colors,
opacities, and 6D covariance parameters for each vertex into the
shader via mesh UV channels and disable frustum culling. For alpha-
blending, we outsource splat sorting based on camera distance from
far to close into a background thread and hot-swap the resorted
splat cloud into the UV channels at 1 Hz. We thereby obtained a
standalone & on-device VR viewer for Gaussian splatting, enabling
exploration of the captured room and captured objects in life-size.

Robot-Aware Splat Shading viaMulti-Cone Casting. In this project,
we are not interested in rendering the full space scene, but aim to
only render the region within which the robot is currently situ-
ated. More formally, given the 3D splat geometry, the eye’s view
position and direction, and the robot’s current position, rotation,
and joint configuration, we want to render a 2D patch which we
can seamlessly composite onto the 2D passthrough image, thereby
concealing the robot.

Our idea, visualized in Fig. 13a, is to cast a cone from the user’s
left or right eye position with an oval cross-section, covering the
robot’s vertical axis, i.e., covering the robot base, mast, and head.
Then, we only render splats that are inside this cone, discarding all
other splats. By casting a second cone, encompassing the horizontal
arm, and then combining both rendering results, we obtain a patch
that fully covers the robot. Since we track the robot, we know its

structural control points at all times. By recomputing the required
cone geometry at every framewith current structural control points,
the robot remains inside the cone, even as it moves (see Fig. 13c).

Fig. 14 provides an insight into the underlying trigonometry.
From our robot tracker, we know the pose of the robot and thus its
structural control points including its top𝑇 and bottom 𝐵 points in
3D space. From the user’s headset, we also know the eye pose 𝐸 in
3D. Given the triangle △𝐸𝑇𝐵, we first compute lengths 𝐸𝑇 and 𝐸𝐵.
From the angle bisector theorem, we obtain the angle bisector ratio
𝑟 = 𝐸𝑇

𝐸𝐵
. Using the section formula, we then compute the bisector’s

point of incidence as 𝑃∗ = 𝑇+𝑟𝐵
1+𝑟 . To obtain the cone transform

matrix, we compute the look-at rotation from 𝐸 to 𝑃∗ representing
the cone axis, oriented upward from 𝐵 to 𝑇 , and translated to 𝐸

as the cone apex. In the vertex shader, we transform splats by the
cone transform matrix and discard or retain them based on their
angle divergence from the central cone axis.
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Figure 14: Structural control points of the robot inform our
cone geometry computation that automatically shrinks or grows
the coverage patch as the user or the robot moves, or as the robot
extends or retracts.
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Figure 15: SplatiMate’s splat vertex and fragment rasteriza-

tion & shading pipeline. All images rendered on-device in debug
mode. Text labels added post-hoc. The grayed-out out-of-cone ren-
der in the top-mid image is shown for illustration, and discarded
early in the vertex shader during the user experience only render-
ing the robot-covering patch.

Our shading pipeline, executed for each eye buffer, is shown
in Fig. 15. The vertex shader discards out-of-cone splats already
early on by sending them outside the clip space. In the fragment
shader, we then use the cone geometry to determine a pixel’s nor-
malized squared elliptic radius on the conic section to determine
a feathering degree. By feathering, the rendered patch smoothly
transitions into the passthrough view. Additionally, in the fragment
shader, we minimum-blend the two normalized squared elliptic
radii, one for mast ellipse and one for the arm ellipse, to find a
smooth handover of the feathering degree at the edge from one
rendered ellipse to the other. This means we complement Gauss-
ian splatting’s classical alpha-blending along the depth axis with
cone-guided alpha-blending of splats along the image axes. Overall,
what results is a feathered multi-elliptic shape that covers the full
robot as it moves, turns, extends, or retracts, or as the user builds
distance or proximity, or as the user turns.

We render the result into an ARGB32 render texture at a res-
olution of 1680w × 1760h and blit the result into the respective
eye’s OnRenderImage hook using a custom blitting material that
accounts for gamma correction after alpha-blending together all
fragments (premultiplied, Blend One OneMinusSrcAlpha). While
we found that using an ARGB64 render texture increases the ren-
dering quality considerably, preventing tints or artifacts that are
at times noticeable in the patch otherwise, the added performance
overhead is infeasible for interactivity, and therefore we stick to
ARGB32. The final result, composited with the passthrough view,
can be seen in Fig. 15, top right.

5.2.3 Splat Animation. To animate the de- and rematerialization
effect on virtual objects, we first compute the axis-aligned bounding
box for the splat, and then separate it into two slices depending on
the progress of promise fulfillment. We use true splat colors for the
completed part, while setting the color of the individual splats of

Figure 16: RealityGoGo’s surface-aware amplification. a○
Top-down view illustration of RealityGoGo’s dynamic amplification
technique which maps a fixed travel distance to the dynamically
computed distance to the best-matching drop surface. b○ Top-down
view plot of the amplification field, visualizing the amplification fac-
tor at each possible hand position after pinching at a pinch distance
of 30 cm. Amplification kicks in 5 cm farther out, highest in the
direction of the farthest surface, over a distance of 15 cm. Surfaces
indicated as gray dots. c○ HMD view of surface annotations of the
sill, desk, and coffee table during space setup.

the uncompleted part to black and nearly transparent (10%). Fur-
thermore, we slice the incomplete part again into an oscillating
middle part, depending on elapsed time, and set it to zero trans-
parency, thereby obtaining a scanner-like effect to represent that
the promise is pending.

5.3 RealityGoGo: Surface-Aware Amplification

for Grab-and-Drop Interactions in MR

Interaction Setup. As the app starts up in a new space, we man-
ually co-align the virtual scene splat with the physical scene, in-
teractable virtual objects with current poses of physical objects,
and virtual surfaces with physical surfaces (similar to Meta’s room
setup feature). Fig. 16c shows an example of three aligned surfaces.
These surfaces represent robot-reachable drop surfaces onto which
the user may drop a selected object.

Interaction Technique. We aim to enable the user to select distant
objects and drop them on a suitable drop surface in their envi-
ronment. To this end, we implement an interaction technique we
refer to as RealityGoGo, which introduces four differences from
the classical Go-Go interaction technique [50] to adapt it from
VR to MR with multiple physical-world target surfaces at differ-
ent distances. 1) For grabbing, we animate the object toward the
user’s hand as described, instead of “casting out” a virtual arm
or hand. 2) We define the amplification threshold dynamically
based on an acquisition point. 3) For dropping, we do not am-
plify the arm or a virtual hand but simply the object position.
This avoids the need to render a visually distracting virtual Go-Go
arm onto the passthrough view. 4) We use a target-aware smooth-
step function between the acquisition radius and a limit radius
that quickly flattens amplification again, thereby eliminating the
risk of overshooting, and in particular, allowing users to reach all
surfaces across varying distances comfortably. Fig. 16a visualizes
the underlying amplification concept.
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Step 1: Grab. Shown in Fig. 1a, as the user points towards an
object, we use the Quest Interaction SDK’s distance hand grab
interaction with an object motion provider that animates a virtual
twin of the object toward the user’s hand. However, we extend it
for a drop interaction as follows.

Step 2: Interaction-Wise Calibration. As soon as the object arrives
at the user’s pinched fingers, we define the current pinch position as
the calibrated amplification threshold, referring to this as the acqui-
sition point. The distance between the headset and the acquisition
point represents a radius around the user.

Step 3: Isometric and Amplified Control. If users pull the object
closer to their head to inspect it, hand motion is isometrically
mapped to object motion. However, as soon as they reach out
again beyond the acquisition point radius (plus a small safety offset
of 5 cm to avoid unintended amplification after acquisition), they
operate in an amplified regime until they hit the limit radius. The
limit radius is computed as the acquisition radius plus 20 cm. While
amplification in VR [44, 67] often aims at a subconscious effect, we
aim to allow the user to easily and knowingly bridge the distance to
remote surfaces, which could be close or very far away. Therefore,
based on the reach direction, we cast a 3D cone, find the most likely
intended drop surface, and set the amplification distance to the dis-
tance toward that surface. As soon as the user reaches out, object
motion accelerates and then decelerates again until they reach the
limit radius where the smooth step functions return values near
100%, returning to a fully linear regime at the target surface. If
users reach back, the object quickly bridges the distance to their
body again. If users reach sideways, we smoothly blend into non-
amplified regime again (see amplification field in Fig. 16b), or hand
them over into the next cone if detected.

Step 4: Drop. As the manipulated object enters the volume above
a target surface, a small green surface-aligned disk below the object
(e.g., see Fig. 6, c ) indicates the ability to drop it. As the user releases
their pinch, the object animates toward the indicated surface point.

6 Applications

Reality Promises enable new capabilities for a range of users
across different application domains. For entertainment applications,
Reality Promises add the capability of physicalized storytelling to
MR games and narratives. For example, a game character can abduct
a user’s stuffed animal and make it reappear in a different place only
if the user solves the game quest. Hiding the robot might increase
the game’s believability of exerting control over physical space,
thus deepening immersion. For remote collaboration applications,
Reality Promises can allow a remote interlocutor to take control
of the local user’s space, for example, in an avatar-based AR call
between a local user and their friend cooking together in the kitchen.
Rendering the remote interlocutor’s avatar in lieu of the robot might
increase the sense of co-presence. For health applications, Reality
Promises might enable the capability of behavioral nudging, e.g., by
spawning a banana on the table if the user did not have healthy food
for two hours, thus presenting a subtle reminder to eat healthily. For
architecture applications, Reality Promises could contribute to the
field of responsive architecture where a space subtly re-configures
itself to changing needs.

7 Limitations and Future Work

In the following, we compare our system implementation against
the overarching vision of Reality Promises.

Scene Generalizability. Our system is portable and does not re-
quire any hardware setup in a new scene: In contrast to most ap-
plications and research that offload rendering to a dedicated GPU
[30, 52, 62], we designed and implemented our splatting system for
full on-device rendering, thereby preventing any wires. Further-
more, by tracking the robot inside-out, we eliminated the need for
room-mounted tracking rigs. However, on the software side, any
new scene and its objects must be captured, prepared, annotated,
and imported into the system. In the future, we see potential to
leverage the robot’s sensor system for automatic space and object

capture [38, 41], automatically moving objects out of the way for
background scanning and capturing the objects themselves in the
process, while leveraging advances in scene understanding [4, 68].
Furthermore, the robot might periodically set out for automatic in-

ventory discovery, e.g., informing the MagicMake menu about avail-
able objects in the surroundings. At the same time, it could scout
not only for new but even re-track known but moved objects. The
creation of a Reality Promise could also trigger a robotic search for
the desired object, rejecting the promise if the robot does not find it.
Beyond the robot, this process might even be performed coopera-
tively with the user headset’s sensors, similar to collaborative SLAM.
Using the passthrough cameras–very recently opened for developer
access in Meta Quest–can enable capturing the space en passant
for splat reconstruction, object tracking, and object redetection. Ad-
vances in machine learning from transformers [6] to reinforcement
learning [69] promise automatic affordance detection. Integrations
with online webshops might even open up the way for long-running
promises that start materializing immediately as the user orders the
product and where only the last meters from the door front to the
user’s already chosen location is fulfilled by the robot.

Visual Fidelity. As part of our space setup procedure, we manu-
ally color-matched the reconstructed splat with the passthrough
view’s appearance ahead of time. Future research into photometric
splat alignment [71] can improve the integration of the rendered
splat patch with the passthrough view. Furthermore, more powerful
GPUs, found in today’s high-end devices such as Apple Vision Pro
or to be expected from future hardware innovations, afford higher
splat counts in a scene and will thus further improve the visual
fidelity of the rendered splat.

Robotic Versatility. In this work, we employed the Stretch 3 with
a 2-finger gripper on a Cartesian kinematic chain. Practically, this
limits reliably performable manipulations to linear sequences with
objects measuring 15 cm of diameter at maximum. Advances in
dexterity promise opening doors, windows, and drawers, manipu-
lating smaller objects, potentially even enabling dual-manipulator
interactions such as opening bottles.

Interaction Versatility. In this paper, we presented pick-and-place-
based Reality Promises that comprise 1) communicating the user’s
manipulation intent to the system, 2) virtually rendering the desired
manipulation as a promised reality, and 3) executing the manipula-
tion sequence by means of the robot while visually replacing the
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physical for a virtual cause of manipulation. Slight system adaptions
may enable Reality Promises for calling an elevator with a button
press, operating a light switch, closing window curtains, turning a
door knob, or pouring liquid from a bottle. In the longer-term future,
the same three steps can be considered in order to enable Reality
Promises that manage more complex spatial manipulations, e.g.,
filling the dishwasher. Furthermore, additional interactions can be
studied to handle longer fulfillment durations ranging from allow-
ing promise cancellations mid-way to predicting interaction intent
based on user behavior and auto-triggering a Reality Promise to
minimize the intent-to-fulfillment duration.

Human Factors. User safety is a core aspect of any robotic system,
more so in a system that visually hides a potentially close robot.
While our system technically supports free mobility, as we synthe-
size the splat from any 6 DoF view, we assume a user that is seated
during close robotic operation. For more elaborate approaches of
collision prevention, the need for collision course detection arises,
e.g., by use of spatiotemporal motion extrapolation to predict poten-
tially dangerous path crossings. Once a collision course is detected,
three tactics suggest themselves. First, interrupt the experience by
breaking the illusion and revealing the robot. Second, diverge the
robot, i.e., by stopping or re-routing it. Third, diverge the user by
rendering virtual content into their collision course. The last option
is particularly suitable for gaming applications, where the user can
be made believe that the diversion is part of the intended story (e.g.,
a fire breaking out in front of them to make them jump, when in
fact, the fire only breaks out to diverge them from colliding with
the robot) [11]. Furthermore, investigating user acceptance of an
invisible mobile robot that might be hidden anywhere in space
remains a question for user-study-based future research.

8 Conclusion

Weiser stated that the “most profound technologies are those that
disappear” [66], culminating in notions such as Norman’s Invisible
Computing [47]. In this work, we reinterpreted this vision literally
and introduced the novel concept of Reality Promises that abstract
away all intricacies of robotic operations, including the robot itself,
behind a carefully designed “reality interface”. We demonstrated
their use to control the user’s experience across two branches of
reality that are decoupled and later recoupled through a full-scale
mobile robotic manipulation system, an on-HMD, robot-aware 3D
Gaussian splatting system, and an interaction system for reality
manipulations. We demonstrated how to achieve tight conceptual
integration and technical orchestration between them to enable ex-
periences of magic motions, materializations, menus, and monsters
in an effort to get a step closer to Sutherland’s Ultimate Display [56],
where the computer has control over the existence of matter.
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A Failure Mode Analysis of the Pick-and-Place

Robotic Pipeline

We performed 20 pick-and-place sequences for 2 objects each (co-
conut water, chips container). Of these 40 operations, 85% (34x)
were completed successfully. The failure modes were as follows:

• 5% (= 2x) failed grab (1x coconut water, 1x chips container)
• 2.5% (1x) successful grab, but failed drop hitting the edge of
the table (chips container)

• 2.5% (1x) objects fell down during transport due to bad grip
(chips container)

• 5% (2x) the low-level robot driver entered an erroneous state
and refused to accept commands.

For successful cases, the distance between physically achieved end
pose and virtually defined target pose was 3.4 cm on average.
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